

AIM

- Major mergers between spirals are the most efficient way to produce early-type galaxies in the Local Universe!
- Major mergers between gas-rich spirals produce gas-rich collisional debris
- Gaseous tidal tails may be clumpy, hosting knots of star-forming regions
- Sub-structures are present in tidal tails

√ Tidal dwarf galaxies

Bournaud, Duc & Emsellem, 2008

Formation of sub-structures within tidal debris NGC 7252 ✓ Tidal dwarf galaxies Bournaud, Duc & Emsellem, 2008

After 1 Gyr

Bournaud, Duc & Emsellem, 2008

After 1 Gyr

Bournaud, Duc & Emsellem, 2008

Frequency

- Only a small fraction of galaxies (a few percent) show evidence for an on-going tidal interaction due to a major merger
- A large fraction of ETGs exhibit hints of past major collisions

Frequency

- Only a small fraction of galaxies (a few percent) show evidence for an on-going tidal interaction due to a major merger
- A large fraction of ETGs exhibit hints of past major collisions
- The fraction of major mergers are believed to increase with redshift

Local analogues

Local analogues

Local analogues

Elmegreen et al. 2007

Local analogues

Star-Forming clumps:

- 1000 times more massive:
 10⁸-10⁹ M_o
- Ages of the clumps ~100-500 Myr

Are they really merging nuclei?

- ✓ Weird projection effects
- ✓ KDCs + decoupled components in tidal debris

- √ Weird projection effects
- ✓ KDCs + decoupled components in tidal debris

Kinematical signature of a merger: a mess ... unlike rotating disk!

Puech et al., 2009; Hammer et al., 2009

Puech et al., 2009; Hammer et al., 2009

The peak of velocity dispersion is displaced!

kinemetry of high redshift galaxies
Shapiro et al. 2008

kinematics of ionized gaz in clumpy galaxies with VLT/SINFONI

+225 +150 -75 -150 -46:58.0 59.0 -27:47:00.0 01.0 Declination (J2000)

- Global rotation
- Central -peak
- Individual clump velocities can differ by 50 km/s

Bournaud, Daddi, Elmegreen et al. 2008

• The internal kinematics of clumpy galaxies is consistent with that of a rotating disk with local condensations

kinematics of clumpy galaxies with VLT/SINFONI

- Global rotation
- Central -peak
- Individual clump velocities can differ by 50 km/s

A model with internal clump formation able to reproduce the morphology (non-exponential disk) and (perturbed) kinematics of the system

Numerical model of clumpy galaxies

- Disk in instable (Q< 1)
- •Massive clumps are formed, containing 50% of disk mass
- The clumps interact and migrate to the center, while losing some mass
- A bulge is formed (bulge/disk of about 0.3, with low V/σ)

Mergers vs internally-clumpy disks?

Merger scenario

✓ Initially separate galaxies formed in separate halos merge

Disk fragmentation scenario

- ✓ Clumps made within a single halo merge
- Gravitationnal instabilities internal to a single halo
- High turbulent gas (σ of 50 km/s) form massive clumps (at Jeans mass 10^9 Mo) which may collapse (Q prop to σ k/ Σ <1) if the gas+stars column density is high in disk

- Spheroids prevent the formation of SF clumps
 - This scenario implies the smooth accretion of baryons (i.e. not via mergers) to avoid the formation of bulges

Theoretical evidence for important cold accretion at high-z

Dekel & Birnboim 2006 Dekel

- Above a critical halo mass, accreted gas is shocked and no longer fuel disks
- However, at high z, accretion may still occur through dense filaments of cold gas Efficient way to collect large quantities of gas within the disk

- At low-z, most of the accretion is prohibited by the halos: morphological evolution driven by mergers (formation of red sequence?)
- Moderate cold accretion may however explain some properties of spirals: lopesideness and bar frequency

Resurection of bars by gas accretion

Lopesided galaxy

- Paired galaxies have statistically a higher SFR than isolated galaxies
- Numerical simulations predict a SFR enhancement: SFR increased by a factor greater than 5 are rare and found only in about 15% of major galaxy interactions and mergers (Di Matteo et al., 2009)
- The level of enhanced depends on the environment, and is deeper in the outerskirts of clusters of galaxies (Martig et al., 2008)
- All ULIRGs (with SFRs > 100 Mo/yr) are advanced mergers
- Simulations have difficulties to reproduce extreme starburst unless an unrealistic gas fraction (for low z) is assumed in the colliding galaxies (Cox et al., 2008)

Di Matteo et al., 2009

Star formation in high-z mergers

• Star Formation in distant (z=1) LIRG/ULIRG (with SFR of a few 100 Mo/yr) takes place in normal spirals, including galaxies in a clumpy phase

• The SMGs, HyLIRG (with SFR>1000 Mo/yr) are probably advanced mergers

=> Role of mergers: trigger extreme Star-Formation at each z range

Morphological evolution of galaxies:

- at low-z: main driver (outside clusters where additional effects may occur) formation of structures: SSCs, GCs, UCDs?
- at high-z: secular evolution of clumpy disks, through cold gas accretion, may form present day spirals
- at intermediate z: controversial results: "disk rebuilding" scenario challenged

Star-formation

- at low and high z: most extreme bursts: ULIRGs to SMGs
- Whether most SF in Universe takes place through merging phase is challenged
- Strong environmental effects: avoid densest regions at low-z, not at intermediate ones
- Results obtained thanks to a coumpling between observations (kinematics of resolved galaxies) and simulations

