Galaxy Cluster Mergers & Star Formation

Chiara Ferrari

In collaboration with:

C.Benoist, J.Brinchmann, A.Cappi, A.Diaferio, L.Feretti, R.Hunstead, W.Kapferer, T.Kronberger, J.C.Mauduit, S.Maurogordato, J.L.Sauvageot, S.Schindler, E.Slezak

Outline of the talk

- Introduction: merging clusters & star formation
- Observational analysis of the galaxy cluster Abell 3921
 - Dynamical state (Optical & X-rays: Ferrari+ 05; Belsole+ 05)
 - Star formation (SF) properties (Optical & Radio: Ferrari+ 05; 06; in prep.)
- Comparison with numerical simulations
 - Ram-pressure on spiral galaxies (Kronberger+ 08; Kapferer+ 09)
 - Ram-pressure on interacting galaxies (Kapferer+ 08)

Star formation in (merging) clusters

- * Observed evolution in the star formation properties of cluster galaxies with redshift
 - Increasing fraction of blue galaxies with z(e.g. Butcher & Oemler 78)
 - Increasing fraction of star forming/post-star forming galaxies with z (e.g. Dressler+ 87,99)
- ★ Evolution of cluster members ⇔ hierarchical growth of large scale structures?
- Debated observational evidence that cluster
 mergers may trigger star formation
 (e.g. Caldwell+ 93; Bardelli+ 98; Miller+ 05; Owen+ 05)

Multi-\(\lambda\) analysis of merging clusters

- Optical: WFI, EFOSC2, VIMOS@ESO, 2dF@AAT
- * X-rays: XMM, Chandra
- * Radio: VLA, ATCA
- → Dynamical state of clusters (Belsole+ 05,04; Ferrari+ 03,06a; Maurogordato+ 08; Sauvageot+ 05)
- → Correlation with star formation properties (Ferrari+ 05,06b; Maurogordato+ in prep.)
- → Presence of diffuse intra-cluster radio emission (Ferrari+ 06a)

Galaxy iso-density maps + X-ray surface brightness cts. (DSS + ROSAT)

A detailed multi-λ analysis of A3921

Why this cluster?

- Precise knowledge of the dynamical state of the cluster
- * Quite simple and well determined merging scenario

Analysis of the correlation between star formation

& cluster-cluster collision

A3921: an off-axis pre-merger event

Galaxy iso-density map + ICM temperature map & surface brightness contours

(ESO: Ferrari+ 05; XMM: Belsole+ 05)

ICM temperature map + X-ray surface brightness (Ricker & Sarazin 01)

ICM metallicity distribution (XMM: Belsole+ 05)

ICM metallicity distribution + galaxy isodensity contours (Kapferer+ 06)

SF in the collision region

Optical (EFOSC2+WFI) + Radio (ATCA) - Ferrari+ 05, 06

A3921 galaxies

- * k (old population of stars) 71%
- * k+a (recent star formation) 16%
- e (ongoing star formation) 13%

Star formation enhanced by cluster collision?

SF enhanced by cluster collision?

- Completeness in the central cluster field
- Precise determination of cluster members

- * Discrimination between star forming galaxies and AGNs
- Physical mechanisms driving the observational properties

SF enhanced by cluster collision?

2dF spectroscopy from [OII] to [NII]

- Completeness in the central cluster field
- Precise determination of cluster members

- * Discrimination between star forming galaxies and AGNs
- * Physical mechanisms driving the observational properties

Numerical simulations

Ferrari+ in prep.

Spatial and velocity distribution of objects with high quality *z* determination

Ferrari+ in prep.

- Completeness in the central cluster field
- Precise determination of cluster members
- Discrimination between star forming galaxies and AGNs

Ferrari+ in prep.

- Completeness in the central cluster field
- Precise determination of cluster members
- Discrimination between star forming galaxies and AGNs

Caustic method: Diaferio 99

Ferrari+ in prep.

- Completeness in the central cluster field
- Precise determination of cluster members
- Discrimination between star forming galaxies and AGNs

Star formation & merging event

Star formation & merging event

Star forming galaxies vs. AGNs

Ferrari+ in prep.

SF enhanced in the collision region: why?

Comparison with numerical simulations by "Hydro-Ski" team S. Schindler & Collaborators @ Innsbruck University

SF enhanced in the collision region: why?

Kapferer+ 09

→ Ram-pressure can enhance star formation in a galaxy

Where do stars form?

Kapferer+ 09

Kronberger+ 08

Where do stars form?

Surface density of stellar component 500 Myr after ram-pressure has started Kapferer+ 09

SF enhanced in the collision region: why?

- Galaxy-galaxy interactions and mergers (e.g. Duc+ 97)
- * Galaxy mergers + ram-pressure (e.g. Kapferer+ 08)
- * Galaxy mergers + cluster tidal field (e.g. Martig & Bournaud 08)

HST observations of dusty star forming galaxies at the center of the merging cluster A851 (Oemler+ 09)

SF enhanced in the collision region: why?

- Galaxy-galaxy interactions and mergers (e.g. Duc+ 97)
- * Galaxy mergers + ram-pressure (e.g. Kapferer+ 08)
- Galaxy mergers + cluster tidal field (e.g. Martig & Bournaud 08)

* No emission lines

k log (L_{22cm}(W/Hz)) = 22.20 (SFR=19.6)

* Not in the collision region

- * e(b) spectral type (SFR=1.74)
- $* log (L_{22cm}(W/Hz)) < 21.34 (SFR<3.05)$
- * In the collision region

Simulations vs. other observations

Sun+ 06,07

See also e.g. Randall+ 08; Kim+ 08

Simulations vs. other observations

Kapferer+ 09

See also, e.g.: Crowl+ 05; Oosterloo+ 05; Cortese+ 06; Yoshida+ 02,04,08

Simulations vs. other observations

→ Fast (<< 1 Gyr) gas depletion of the disk by ram-pressure

In agreement with observational evidence that the physical mechanism(s) switching off star formation in dense environments must act on short timescales (e.g. Balogh+ 04; Cassata+ 07; Poggianti+ 09)

Cluster Mergers & Star Formation

- * Star formation enhanced in the collision region of A3921
- ★ Possible physical origin: ram-pressure ⇒ enhancement and subsequent quenching of star formation in cluster galaxies

* Need of <u>detailed</u> multi-wavelength analyses of significant samples of merging clusters at different redshifts

Increasing fraction of red galaxies with density

and / or

difference in the SFR of star forming galaxies

Distribution of EW(H α) for galaxies in:

Low density environment (dotted line)

High density environment (solid line)

Balogh et al. 2004

The physical mechanism(s) switching off SF in dense environments must act on short timescales (< 1 Gyr)