

The Arrow of Transformation

Is transformation only one way

"Inverse" morphological transformation

Low z examples

NGC 807, Young et al 2008

Martin Bureau's talk demonstrates the power of multi-wavelength studies.

Young et al 2008: MIR & FIR emission in E/S0s with molecular gas

- 0.05 < SFR < 0.7 Mo/yr
- 1.5 < t_{gas depletion} < 7.7 Gyr
- 10¹⁰ < Mstellar < few x 10¹¹
- => final disk mass ~ few % of bulge at best.

Intermediate z example

If mergers occurred at z~1-2, remnants may be visible at z~0.6, but disks may be enshrouded by dust.

- Hammer et al 2009: J033245.11-274724.0 z=0.43, compact, LIRG, Mass~ Milky Way.
- Blue bulge + red disk + bar system
- Disk contributes ~ 81% of M_{stellar} and ~90% of SFR.
- SFR~20 Mo/yr, Mgas~2.3 x 10¹⁰ Mo (~40% total mass)
- Large fraction of young stars (< 0.3 Gyr: 20%, 0.5-0.8 Gyr: 30%)
- σ peaks at ends of arms

Galaxy may reach local Tully Fisher relationship if all gas consumed by z~0

Evolution of disk size since z=1

• Trujillo & Pohlen (2005): small to moderate (\sim 25%) inside-out growth of the disk galaxies since $z \sim 1$

High z example?

Smith et al 2002

ERO J003707+0909.5: z =1.6 L* early-type galaxy.

R-K = 5.4

 $D/B \sim 0.25$

Bulge passively evolving

Disk modestly star-forming

SFR ~ 6 Mo/yr

Possess characteristics of both ellipticals & spirals

Smith et al
called it
"Transvestite"

SAO/NASA Astrophysics Data System (ADS)

Full Text Query Results from the ADS Database

External search systems queried: none

Selected and retrieved 1 page.

(6) MNRAS, 333, L16 (2002): A Hubble Space Telescope lensing survey of X-ray luminous galaxy clusters - III. A multiply imaged extremely red galaxy at z=1.6

Page L19 ...

Query Parameters:

Full text words: TRANSVESTITE

SAO/NASA ADS Homepage | ADS Sitemap | Query Form | Basic Search | Preferences | HELP | FAQ

A scientific name is needed...

Something Disney/Pixar don't want your kids to know about...

Hermaphrodite: an organism having both male and female reproductive organs. In many species, hermaphroditism is a common part of the lifecycle. (wikipedia)

Hermaphrodite galaxy

 an early type galaxy in the process of turning back into a spiral

Detailed Research on Androgynous Galaxies (DRAG)

Can we find nearby examples of hermaphrodites?

- Sample:
 - Nearby, HI rich dust-lane ellipticals (Oosterloo et al 2002, 2007)
- Observations:
 - Deep $H\alpha$ imaging with ESO NTT EMMI
 - Exposrues ~10x deeper than SINNG.
 - Extinction correction from Driver et al (2007) empirical relation: AR=0.41 mag.

NGC 3108 Ha+R+HI

IC5063 Ha+R+HI

Luminosity Function of HII regions (HIILF)

HIILF of both gals have slope of -2.2

HIILFs qualitatively resemble those of late-type Local Group gals

- NGC 3108 compariable to M33 (Sc)
- IC 5063 compariable to NGC 6822 (Irr)

Lack very bright HII regions

Unresolved -- upper limit
 ~ 150 pc (NGC 3108) 310 pc (IC 5063)

Gas surface density

Gas surface densities:

- 4 Mo pc⁻² (NGC 3108)
- 2.4 Mo pc⁻² (IC 5063),

i.e. stars are forming at Kennicutt threshold or slightly below (beam size 4 kpc)

Summary of properties

	M _{stellar} (Mo)	M _{HI} (Mo)	SFR (Mo/yr)	D/B (10 Gyr)
NGC 3108	3.6 x 10 ¹¹	2.3 x 10 ⁹	0.42	0.02
IC 5063	4.4 x 10 ¹¹	3.9 x 10 ⁹	0.04	0.001

Will not transform to giant disk systems without additional gas and boost in SFR

Predicting future Disk-to-bulge ratios

Two key questions:

- Is there enough gas to grow a new disk?
- Is the SFR high enough?

ALFALFA survey (Grossi et al 2009)

- Volume selected (V < 3000 km/s) from SDSS, visually identified Es in low density environments
- ~25% detection rate
 of these, 60% star forming
 (not AGN)

Blue colours -> Young stellar pop esp in low mass subsample.

SFR of blue sequence E/S0s

Kannappan et al 2009:

- Blue-sequence E/S0s have specific SFR comparable to spirals (2-20% per Gyr).
- significant disk growth within Hubble time
- Galaxy Zoo (Schawinski et al 2009): 0.5 < SFR < 50 Msun/yr

Conclusions

- Inverse morphological transformation is occurring even at low redshifts
- Present-day massive ($M_{\rm stellar} \sim 10^{11}$) early-type galaxies will fail to turn into spirals -- disk mass after Hubble time at most a few % of bulge
- Low mass (10⁸ few 10⁹ Mo) Early-type galaxies in low density regions may be good present-day hermaphrodite candidates, but they will not turn into substantial disk systems

