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"Red Sequence” of Cluster Galaxies

Red galaxies hide the
“fossil record” of ~
half of the star
formation in the
Universe.

What is responsible
. for the tilt and scatter
(B-R);: 1482 %/ 0.007, of the scaling
Slope: —0.040 +/— £.007 ° relations?

Scatter: 0.092 °

How did the red
sequence come to be
populated?




Ages, Metallicities & a-Enhancements
from Spectra

Measure “Lick’ indices
(typically Hf3, Hy, HO, several Fe lines, Mgb)

Compare with model grids
¢.g. Thomas/Maraston et al.

Yields (“luminosity-weighted”) ages,
metallicity, a-enhancement




Cluster Samples

Red and emission-free but not morphologically-
selected.

NOAO Fundamental Plane Survey

* 93 rich clusters, bright galaxies
Shapley Clusters
3 rich clusters - deep AAOmega - Smith et al
Coma Cluster Survey - see Poster

e Deep Hectospec - see Poster




Stellar Populations as a function of
Velocity Dispersion, o




Scaling Relations for
Age, Metadllicity, a/Fe

o is the driving scaling
parameter, little
residual dependence on
stellar mass.
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The End of Downsizing?¢

- 1
Coma dwarfs: slope = -0.12 +/- 0.09 ms=0.23 ] [ Coma dwarfs: slope = +0.15 +/- 0.23 rms = 0.22
Shapley: slope = +0.09 +/-0.07 rms =0.19 7] . Shapley slope = 4+0.30 +/- 0.06 s =0.16
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Ages from Balmer Lines
... are luminosity-weighted ages. Could be

Single Burst

Exponential

/ Constant (Quenched)

Secondary Burst
(Frosting)
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Very hard to distinguish these possibilities with spectra




Ages from Balmer Lines

Fit absorption linestrength indices with
different star formation histories.

Predict:

e Colours
« M/L ratios
« Fundamental Plane




Stellar M/L vs Dynamical M/L

Old SSP,

Exponential SFR:
Stellar M/L
(Krougt) | M*/L > Mdyn/L

<+<——— Dynamical M/L
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Age as the source of FP tilt and scatter

Coma. slope=0.792,
SSP  slope=0.662,
AQ slope=0.455,
STR  slope=0.391,
EXP  slope=0.235,
FR slope=0.174,

slope=0.196,
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Frosting disfavoured

Frosting

P |
0.5 1.0

log(Age) from grid inversion

Figure 6. The Rose Call index for galaxies with errors smaller than (.15,
compared to the SSP-equivalent age. The grid indicates the expected be-
haviour for frosting by secondary bursts of age 1.0, 0.7 and 0.5 Gyr (solid
lines top to bottom), and mass-fractions 5. I and (.5 per cent (dotted lines,
left to right), with the remaining mass in a 13 Gyr base population. The up-

per track shows predictions for SSPs, demonstrating the stability of Cali for

ages =1 Gyr. Although a few galaxies fall in the region of the frosted mod-
els. on average the SSP-equivalent ages of young galaxies are not driven by
secondary bursts in the past Gyr.

Rose Call index
distavours <1 Gyr
“frosting” as the
explanation for most
young cluster RSGs.

(In contrast to field
from e.g. UV?)




Stellar Populations as a function
of Environment




Environment

For giant
galaxies, weak
dependence on
environment:

RSGs at the virial
radius are 20%
younger (and less
a-enhanced) than
their counterparts
in the core.
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Colors of Bulges and Disks

b) Bud%e color' T c¢) Disk color
Slope: 1 Slo e: -0.103 + .023
Scalter 0302 1 Scat.t.er 0.128
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For bright galaxies, only disks depend on radius




Recently-quenched
Coma RSG dwarfs
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Recently-quenched
Coma dwarfs

Coma RSG dwarfs consistent with having
been “quenched” within the last 1-2 Gyr.

Morphologically, most of the recently-
quenched galaxies appear to be early-type
with Sersic n ~ 2 (but ~30% do have disks).




Modelling quenching

e Track orbits of haloes in N-body simulations of clusters

« Apply simple prescriptions for “cluster-centric” physics
e.g. “Quenching” when crossing the virial radius

« Make predictions for realistic galaxy orbits (backsplash),
projection effects etc.

 For giant galaxies, these simple models overpredict the
observed linestrenth dependence on cluster-centric radius ...

but:




Infall fimes

Dwarf galaxies
Wlth old dwarf population only present in core

M; < -19
o ~ 40 km/s

r/rzo4—— In projection




Builldup of the red sequence

If age is a strong function of
mass/velocity dispersion then the red-
sequence itself is built “top-down”
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Red Sequence “Truncation”

1 Simulated z=0 CMR from age-mass

U-B (rest)
U-B (rest)

M - Mstar

Steep age-mass relation implies a
gradual build-up of the red sequence.

Predicts a truncation/depletion of the
red sequence even at modest
redshifts, e.g. z~0.25.

Truncation already observed by Smail
et al. 98?

Truncation at higher mass for higher
z: De Lucia et al. 2004; Kodama et al
2004 Goto et al. 2005 ...

Evolved 3 Gyr to z=0.25




Cluster Red Sequence Galaxies

Strong age (“downsizing”), metallicity and a-enhancements
along the RSG velocity dispersion sequence.
Downsizing stops at ¢ ~ 70 km/s.

Exponential (and late frosting) models do not fit dynamical
M/L, but SSP or Quenched models are good fits.

Giant RSG ages depend weakly on environment
 This dependence is mostly in disk component
Dwart RSG ages depend strongly on cluster-centric radius

Simulations suggest that quenching of star formation in
dwarfs may happen around the virial radius.




