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What is an E+A galaxy?

In a spectroscopic survey of galaxies in the
z=0.46 3C295 cluster, Dressler & Gunn

(1983) discovered a nhumber of members with

conspicuous Balmer absorption lines and no

emission lines >

Have also become known és: “k+a”,
“atk”, “red-HDS”, “PSG” galaxies

T o

AAAAAAA

“E +A”



Interpretation of E+A spectral signature:
galaxies in the process of rapid evolution

Couch & Sharples (1987)

Strong Balmer
absorption and blue
colors = galaxy
underwent STARBURST
which was halted less
than 1 Gyr ago

Objects with weaker
Balmer absorption and
redder colors could also
arise from TRUNCATION
of SF in normal star-
forming (Sp) galaxies
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Excellent examples of ‘nurture’ in action?




Environments of E+A galaxies:
Luminous (L>L*) E+As found in significant
numbers in cores of distant rich clusters:
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....but their environments at low redshift are very

different!



Zabludoff et al. (1996): first major search
for E+A S over all enwronments at low-z
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Iden’rlfled 21 E+A ga|a><|es 3
-ma jority of whnch in groups and

n Corresponds to ~0.2 /o of galaxy
" popula’ruon = E+A galaxies are §7
rare in the local universe!
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~10° Mpc? volume of the local
universe
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Blake et al. (2004): sample of
243 E+As identified and used to
study their clustering,
environment, LF




Key outcomes from these ‘local universe’

E+A studies (LCF

S, 2dFGR

'S, SDSS)

*E+A’s essentially indistinguishable from the general galaxy
population at these redshifts in terms of their clustering
properties and their local and global clustering environments
—~>found mainly in galaxy groups and in the field.

<@o what mechanism responsible for their forma@

*Evidence for mergers/interactions being the trigger, based
on 25-30% of E+A’s showing morphological signatures
associated with this process (tidal tails/bridges etc).

It is the question of E+A formation
mechanisms which is the current main issue!




Prime suspects and key discriminating
observables (e.g. Bekki et al 2005):

Young stars
(+ blue light,

Balmer abs)
Kinematics

Morphology

Major merger

Truncated spiral

centrally concentrated spread across disk

pressure supported

spheroid dominated

rotation dominated

faded but intact disk
(= Early-Sp)




Bekki et al's (2005) predictions for radial
variation in Ho absorption strength:
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Requires spatially resolved spectroscopy on

scales of < 2kpc.




First attempts to obtain spatially resolved
spectroscopy of low-z E+A galaxies:

Norton et al. (2001) - long-slit spectroscopy (with 2.5m
Du Pont) of the Z96 E+A sample to measure the distribution
and kinematics of the young and old stellar populations;
majority of sample had:

young stars: centrally concentrated

kinematics:  pressure supported and no
significant rotation; consistent
with Faber-Jackson relation, once
brightening taken into account

Conclusion: consistent with major merger scenario.

BUT based on only 1D spectral information with limited

spatial resolution!



Advancing these studies with Gemini/GMOS

Exploit excellent image quality and light-gathering
power of the 8m Gemini telescopes to significantly
progress this line of investigation via:

* High resolution imaging — spatially resolved color maps
on ~1-2 kpc scales (@z=0.1).

- IFU spectroscopy — 2D spatially resolved spectral
information at similar scales over a large fraction of the
galaxy (IMPORTANT since kinematic center and major
axis not always = photometric center).

- Significant sample of E+A galaxies over a range of
environments (cluster, group, field).




Key elements of experimental design:

- Sample of 10 E+A galaxies: from Blake et al. 2dFGRS ‘gold
plated’ sample [4 isolated, 4 group, 2 cluster; <z> = 0.10]

« GMOS imaging in g & r bands @ 70% IQ (<0.8” seeing):
»>g-r' color maps (gradients/distbn of blue vs red light)
»>superior morphological information to much fainter SB
limits (B~26 mag arcsec?): further evidence for
merg/int via detection of faint tidal debris?

* GMOS IFU spec in ‘two-slit’ mode [5”x 7”"/10kpc x 14 kpc]

with B600 grating over range A, = 3700 - 5100A @ 70%
1Q:

»trace strength of Balmer (HS, Hy) and FeA4383,
C,4668 lines and hence age, residual star formation,
metalicity as well as kinematics across face of galaxy.




Imaging

» Surface brightness profiles
* Morphologies

» Colour maps




g-band
images of | |

our E+A
sample

0.8-1.0" seeing |
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Subtraction of elliptical model profile:

Reveals faint residual (spiral arm + dust?) structure
plus tidal features in 50% of cases.
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Surface colour maps: diverse core colours
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Colour gradients:

(along semi-major axis)

Also a diversity of
behaviour....... positive, |

| 0.9F
o E

negative and flat
gradients!
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IFU Spectroscopy

Spatially resolved:
* Kinematics

« Stellar pops (age, metalicity)




IFU Spectroscopy of our E+A sample:
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Lick indice-based measurements of age
and metallicity:

Model grids from Thomas (2003)
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Geography of the ‘A-star’ emission
(via Ho absorption maps)

Adaptively bin
spatial pixels
- constant
S/N (=10)

Uniformly strong
Balmer line absorption
right across IFU field!
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Template fitting
(via “penalised pixel fitting”
algorithm of Cappellari &
Emsellem 2004)

> Simultaneous
measurement of:

Stellar pops
*Streaming velocity
*Velocity dispersion

Templates = single-age,
single-metallicity stellar

pop synthesis models of
Vazdekis et al. (2007)
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Template fitting:

Fits dominated by
young (<1Gyr) stellar

population femplates:;

at S/N of data,
unable to detect any
old population
contribution!
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Age maps —
based on f e
weighted age of
the best fitting '
SSP template at
each spaxel
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Streaming

velocity maps

arcsec

Clear rotation in

ever'y case buT one!
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Comparison with other work — Norton et al.

[Norton et al's long-slit spectroscopy of Zabludoff etal
LCRS sample, only extends to radii of 1-3 kpcl!]
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Central velocity dispersions:

At their predicted
quiescent M, (),
14 consistent with

1 | population of
normal early-types
(Faber et al; small
dots)
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Further quantification of rotation: A

Az parameter developed for use with 2-D IFU data and is a proxy
measure for the projected stellar angular momentum per unit mass,
derived by averaging over the 2-D kinematic field - Emsellem et al.
(2007), SAURON sample.
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consistent with being
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Young A-star population is a
transient one whose rotation

may not dominate observed
Kinematics in future.




Summary of key results:

 Structural Morphology — our E+A’s are early-type spheroid-
dominated disk galaxies, half of which show tidal signatures
indicative of recent merger:

¢ Hubble types in narrow range S0-Sa;
¢ r'*like surface brightness profiles;

¢ consistent with Faber —Jackson relation (having accounted for
transient brightening).

» Colour Morphology — our E+A’s are diverse in their radial
colour properties:

¢ mixture of red, blue or no cores;

¢ negative, positive, or flat radial gradients.




Summary of key results continued....

- Spatial distribution of young stellar popln — generally
uniformly distributed over the central 6kpc x 6kpc region with
no evidence of any radial gradient:

= 'Red core’ E+A’s: cases where dust associated with
starburst + possible obscured ongoing SF — our model-
subtracted images are inconclusive on this.

» Kinematics — the young stellar populations in all the E+A’s In
our sample show strong rotation. Moreover, their project
angular momentum per unit mass (as measure by Agz) shows
them to be consistent with “fast rotator” population of early-
type galaxies.

« Environment — no sign of any dependency on global
environment (isolated, group, cluster), but numbers small!!




Physical mechanism(s) responsible for
E+A formation:

* The presence of tidal features in many cases, the strong and
centralized Balmer absorption/young population, and the ‘fast
rotator’ kinematical behaviour points to mergers being
favoured (with neither major or minor being ruled out in terms
of producing the fast rotation; Bournard et al. 2009):

BUT — the red cores and neqative radial colour gradients
remain a difficulty!!

 The flavour of merger (major, minor, gas-rich, gas-poor)
remains an issue, and where there is a lot more parameter
space for the simulations to explore:

» Bekki currently extending simulations to gas-poor/gas-rich
minor mergers — preliminary results show some promise
reproducing red cores and negative colour gradients.




