The Spatial Distribution of Starburst and Post-Starburst Galaxies in Clusters at z>0.5

Cheng-Jiun Ma Harald Ebeling

IfA, University of Hawaii

Outline

- Review of post-starburst galaxies
- Wide field spectroscopic survey of MACS (z>0.5)
- Spectroscopic analysis
- Results:
 - Post-starburst galaxies in clusters
 - Starburst galaxies around the clusters

Outline

- Wide field spectroscopic survey of MACS (z>0.5)
- Short Review of post-starburst galaxies
- Spectroscopic analysis
- Results:
 - Post-starburst galaxies in clusters
 - Starburst galaxies around the clusters

I. Wide-Field Spectroscopic Survey of Galaxies in MACS at z>0.5

Goals:

- Cluster dynamics
- Confirmation of large scale structure
- Galaxy properties and evolution in the densest environment.
- Spectroscopic redshift template to calibrate photometric redshift for weak-lensing study

I. Wide-Field Spectroscopic Survey of Galaxies in MACS at z>0.5

Selection of clusters:

I. Wide-Field Spectroscopic Survey of Galaxies in MACS at z>0.5

• Complementary to EDisCS --- we selected the most massive and X-ray luminous clusters in a narrower redshift range.

cluster	all spectra	redshift measurements		high S/N spectra	
		all	at cluster redshift	all	at cluster redshift
M0018**	414	219	164	212	160
M0025	564	286	151	270	142
M0257	412	313	202	307	200
M0454*	1639	1514	242	1514	242
M0647**	138	116	74	87	51
M0717	1752	1055	543	1042	535
M0744**	599	264	140	198	100
M0911	562	346	210	340	209
M1149	773	559	309	495	271
M1423	490	372	124	356	117
M2129**	441	262	147	237	129
M2214	818	531	239	517	228
total	8602	5837	2545	5575	2384

^{*:} from Sean Moran (http://www.astro.caltech.edu/~smm/clusters/)

^{**:} Data collection is not complete.

II. Review:
post-starburst galaxy (E+A)

Post-starburst galaxy is one of the important missing links.

II. Review:

FAQ of E+A

- Q1: How does the star formation terminate?
- Q2: What triggers the starburst?

- Just major merger?
- Galaxy cluster related?

II. Review:

Post-starburst galaxies and galaxy clusters

Low redshift:

- Goto et al. 2005 (SDSS): Almost all of the "bright" E+A galaxies live in the field. (see also Poggianti et al. 2004)
- Hogg et al. 2006 (SDSS): The environment of poststarburst galaxies are similar to star-forming galaxies, <u>although there is a small excess inside</u>

II. Review:

Post-starburst galaxies and galaxy clusters

Intermediate redshift:

- Tran et al. 2005 (4 clusters): Fraction of E+A in clusters > Fraction of E+A in field
- Yan et al. 2008 (DEEP2): Many of the post-starburst galaxies are missed because of [OII] emission related to AGN. Most of the poststarburst galaxies are in the field, instead of the densest region. (see also Balogh et al. 1999)

Poggianti et al. 2009 (EDisCS): fraction of E+A galaxies correlates

III. Spectral Analysis

EW measurements:

- Inverse-variant weighted integration of flux
- Integration windows: Fisher et al. 1998
- For emission line -- Best fit spectrum templates subtracted

Uncertainty of EW: ~1Å

III. Spectral Analysis

TABLE 2
DEFINITION OF SPECTRAL TYPES

=	Туре	Criteria		
	Emission-line	$[OII] < -5 { m \AA} \ { m or} \ H_{eta,em} < -5 { m \AA}$		
	Absorption-line	$[OII] > -5 \text{Å } H_{eta,em} > -5 \text{Å and } rac{(H_{\delta} + H_{\gamma})}{2} < 4 \text{Å}$		
post-starb	urst _{E+A}	no detection of $[OII]$ and $H_{\beta,em}$, and $\frac{(\tilde{H_\delta} + H_\gamma)}{2} > 4 \text{Å}$		
dusty starburst e(a)		Emission-line galaxies with $H_{\delta} > 4 {\rm \AA}$ and $-25 {\rm \AA} < [OII] < -5 {\rm \AA}$		
starburst	e(b)	Emission-line galaxies with $[OII] < -25 $		
-	e(c)	Emission-line galaxies with $H_{\delta} < 4 { m \AA}$ and $-25 { m \AA} < [OII] < -5 { m \AA}$		

Ma et al. 2008, see also Poggianti et al. 2006, 2009

Color-Magnitude Diagram of cluster members

Limit magnitude $m_{Rc} = 22.25 \sim M_{Rc}^* + 2$ at z = 0.55

Color-Magnitude Diagram of cluster members

IV. Results

Radial distribution of E+A in clusters

E+A galaxies at cluster redshift (in ram-pressure radius): 6.0+/-0.8%

E+A galaxies at cluster redshift (outskirt): 1.8+/-0.4%

E+A galaxies in the foreground/background: 1.6+/- 0.3%

Projected distance (ram-pressure radius)

Individual cluster: Do the E+As avoid the very center of clusters?

ACIS-I/Chandra (0.5-7kev)

Individual cluster: Do the E+As avoid the very center of clusters?

Not necessary.

Could be projection effect

Individual cluster: Do the emission-line galaxies avoid the center?

In most cases, yes.

Two examples:

Individual cluster: Does the emission-line galaxies avoid the center?

Conclusion

- The fraction of E+A at z~0.5 inside ram-pressure radius of clusters is higher than any other environment.
 - It is consistent with field spectroscopic survey (Yan et al. 2008)
 that the E+A fraction does not depend strongly on galaxy density,
 unless we are looking at inside of massive clusters.
 - We are not saying the ram-pressure stripping is the only mechanism to quench the starburst, but we suggest the rampressure stripping is more effective to terminate starburst rather than merger.
- No correlation between velocity dispersion and fraction of E+A galaxies at the extreme high velocity dispersion end. The fraction are actually consistent with each other.