The Red-Sequence Cluster Survey

Howard Yee
University of Toronto

The RCS1/RCS2 collaboration

What we learned about Fireflies

Pictures courtesy of I-Hui (Tornado) Li

Canon 450D, f5.6, 2 second exposure, focal length 18mm

- they are green,
- strong evidence for synchronization;
- frequency: 3.5 3.9 /sec,
- no evidence of multiple frequencies,
- duty cycle -10%
 - proper motiondetected: they arenot blinking"christmas lights"on trees

The RCS1/2 Collaboration:

Howard Yee (U.Toronto); Mike Gladders (U. Chicago)

- D. Gilbank (U. Waterloo), H. Hoekstra (Leiden),
- E. Ellingson (U. Colorada), R. Yan(U. Toronto),
- B.C. Hsieh (ASIAA, Taiwan), S. Majumdar (Tata Inst., India),
- T. Webb (McGill), A. Muzzin (Yale),
- I.H. Li (Swinburne, Australia), K. Blindert (MPIA),
- F. Barrientos (U. Catolica, Chile), A. Hicks (Michigan St.),
- P. Hall (YorkU), M. Bautz (MIT), Lihwai Lin (ASIAA, Taiwan)
- + a number of students and postdocs and others at Chicago, UVic, McGill, NCU, NTU, ASIAA, York, CITA, Fermi Lab

Outline:

- a summary of the RCS
- some results on the evolution of galaxy clusters:
 - ♦ For fun:
 - RCS2 strong lensing clusters; a supermassive
 z=0.7 cluster; a supercluster at z=0.9
 - ightharpoonup the evolution of z' band cluster galaxy LF (z~0.4-1)
 - ♦ RCS1 galaxy groups
 - ★ Red-Sequence dispersion at z~1
- The SpARCS survey: finding clusters at z>1

The Cluster Red-Sequence Method

Gladders & Yee 2000, AJ, 120, 2148

Uses the early-type (red) galaxies as markers for cluster detection

Requires only 2 filters: Inexpensive

Color-magnitude relation as a function of redshift

Red-sequence photo-z (2 filters) vs spectral z (RCS1 data); Δz~0.03 to 0.06; as good as <0.02 for RCS2

The RCS1

Gladders and Yee, 2005, ApJS, 157,1

- 92 sq deg, 1998-2001
- total: 13 nights CFHT (12k), 17 nights CTIO (Mosaic Cam)

(including lost times)

- R, z' bands: 15-25 min exposures

1/3 sq deg per pointing

Typical depth (5 sigma): z'~23.6, R~24.8

- 22 patches (typically 2.5x2.5 deg), distributed over RA & dec plus V and B bands for CFHT patches (33 sq deg)

RCS2:

www.RCS2.org

Yee et al. 2007, astro-ph/0701839

A \sim 1000 sq deg cluster survey, with a $z \sim$ 1 limit CFHT MegaCam (Canada/Taiwan)

- Observing completed Jan 2008: photometry (120m objects) mostly completed, preliminary cluster catalogs

- total 920 sq deg:

770 sq deg +150 sq deg from CFHLS-Wide

Three filters: z' r' g' + i' (from CFHQS) exposure t: 6 8 4 min 5

5σ limits: 23.2 25.0 25.4 (AB magnitude)

Expected completeness (100%) depth:

750 km/s (5 kev) clusters at $z\sim1$

Main Science Goals: (RCS2)

- Constrain cosmological parameters
 - $\Omega_{\rm m}$ (to ~0.03), $\sigma_{\rm 8}$ (to ~0.05), w
- create a sample of ~150 strong lenses
- cluster evolution
- weak lensing, cosmic shear (wide/shallow)
- a very large sample of photo-z (useful 0.1<z<0.7)

Cluster sample:

- optimized for $z\sim0.1$ to 1.0; Total number of clusters (useful for cosmology) expected: $\sim 15,000$ (> $\sim 2\times10^{14}$)

RCS-2: Strong Lensing Samples

Galaxy lenses

Einstein radius: 50"

Cluster Redshift: 0.6995

Source Redshift: 2.98

Velocity dispersion 1400 km/sec

Discovery of a Large scale structure at high-z

(Gilbank et al. 2008, ApJL, ; arXiv:astro-ph/0803.1675)

an Magic-Cam, arc z = 3.8

Chandra X-ray image

Red-sequence galaxy density, z=0.9 slice

Some Results on the evolution of cluster and group galaxies

Cluster Galaxy Luminosity Function

I. RCS1 z' band galaxy LF

Gilbank et al. 2008, ApJ, 673, 742

z' vs R-z' CMDs of stacked clusters, background subtracted

500 clusters, 30,000 red sequence galaxies 0.35<z<0.95

Red sequence LF (z'AB)

The Build-up of Faint Red Galaxies

N_bright N faint Ratio of bright (M<-21) to faint (-21<M<-20) red-sequence galaxies as a function of redshift

The build-up of the faint end LF of the red galaxies is consistent with having the blue cloud galaxies moving up to the red-sequence with decreasing redshift: "down-sizing" interpretation of galaxy formation/evolution; also see De Lucia et al 2007

Rich: Bgc>800 (-650 km/s)

Poor: Bgc<500 (<500 km/s)

Dividing the sample into rich and poor clusters - cluster halo mass influence build-up of faint end of red-sequence?

RCS2: 10 x larger sample size, to z-0.2

Total LF: dashed line: model ~corrected for star formation history (4Gy e-folding for blue galaxies, passive for red) and k-corrected to z=0 (roughly equivalent to total stellar-mass function).

Galaxy Groups from RCS-I [I-Hui Li, et al.]

- z'RVB photo-z, 32 sq deg
- "probability-FoF" group finding algorithm (Li & Yee, AJ, 135, 809)
- total sample: 1220 groups; 0.2<z<0.55
 - ≥8 members (M*+2)
 - roughly halo mass limit -2×10¹³ Msun
 - --complete sample to z-0.47 (-1000 groups)

- AAT/AAOmega observations to produce a spectroscopic sample -325 groups

Examples of RCS1 groups

Circle: 1R200; squares: linked group members CMR: B-R vs R (observed), solid lines: theoretical red-sequence

Redshift distribution of group sample

Stellar mass (based on R and B-R color, Bell et al.) vs absolute R mag (k- and e-corrected)

Groups are divided into different "mass" bins using total stellar mass

Butcher-Oemler effect for groups of different total stellar masses

Color distribution of central group galaxies, divide groups into "blue-central" and "red-central" samples

- "red-central" groups have higher red fraction
- Weinmann et al. (2006) found a similar effect with SDSS groups at low z; they called this "galactic conformity"

Average stellar mass per galaxy vs group-centric radius

- average stellar mass is basically flat, except "red-central" groups have a strong increase in the core.

Evidence of pre-processing

Red fraction of galaxies in cluster redshift space; groups selected by pFoF (≥8 members), non-groups: ≤ 2 members

Red Squence at z>1 Deep HST images of z~1 RCS clusters

HST z^1 cluster SNe program (PI: Perlmutter) example: SN in RCS 0221, cluster early-type galaxy, confirmed z = 1.02

(Koester et al 2009, arXiv:0903.2478

Optical/IR selected clusters appear to be younger than X-ray selected clusters

X-ray selected clusters

Early/non-early type (morphological) ratios

X-ray selected clusters

The Search for z >1 Clusters

- the RCS technique is optimized when the 2 filters straddle the 4000A break.
- requires IR images for z>-1.
 - the cluster redshift "desert": 1.3<z<2

The SpARCS survey (Adam Muzzin, G. Wilson, Yee, +...)

- combining Spitzer SWIRE 3.6µm data (50 sq deg) with deep z' band (-2hr integration)
- CFHT (8 nights) + CTIO (15 nights); 6 patches
 - search for clusters to z-1.8
 - catalog of -200 clusters with z>1

Muzzin et al. 2009, ApJ, in press Wilson et al. 2009, ApJ, in press

z = 1.1796 $\sigma = 490 \pm 140$ km/s

10 Hr on-sky N&S mask with GMOS-S

10 High confidence members, z = 1.34vel dispersion = 1050±230 km/s

Summary:

- Fireflies are cool
- The optical/IR red-sequence method (and its variants) is a powerful and efficient method for creating large, well-characterized samples of cluster galaxies, covering up to z-1, and to z-2 with deep IR images.
- Large samples of lower mass groups can be generated using photo-z

- The RCS1 sample shows that the build-up of the faint end of the red-sequence occurs through out 0.1<z<1, and there is evidence of "cluster down-sizing" in the build up.
- The dispersion of the red-sequence at z>1 is a useful tool for constraining cluster galaxy formation history; some differences between optical- and x-ray may exist
- galaxy groups show strong signs of pre-processing before falling into cluster environments
- population properties of group galaxy have a complex dependence on group halo mass and stellar mass, and also on the status of the central galaxy.
- Still larger samples of clusters covering a good redshift and richness range are needed for the study of the evolution of clusters, groups, and their member galaxies.